If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21r^2+13r-20=0
a = 21; b = 13; c = -20;
Δ = b2-4ac
Δ = 132-4·21·(-20)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-43}{2*21}=\frac{-56}{42} =-1+1/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+43}{2*21}=\frac{30}{42} =5/7 $
| 5/6x+4/3=2/3x | | 200+10^x+3=1600 | | R=(160-0.20x)x | | 5(x+1)=-x=4(x-1)=9 | | 60x^2+33x-9=0 | | X2-4x-60=0 | | 121y^2+49=0 | | -3+5v=12 | | 3(x+7)-20=2x+6 | | 2v-2=-12 | | 2-2x3+3=() | | 8=4y-4 | | 7x+8/4=3x-13/5 | | 12=3x+(x-4) | | 7/2+3x/2=-1 | | 81x-11=117x+7 | | (3n)=n+30 | | 6x+11=x+8 | | x3+2-5x=0 | | 200+10^x-3=1600 | | 2x-11=x+9 | | 45,000+15x+0.3x^2=605x-0.7x^2 | | x^2+2/x-5=0 | | 20-5x=-55 | | 8+5x=2-9x | | 3x=7=-4 | | -y-28+y^2=2y+2y^2 | | x+2/x-5=0 | | 3n-26=5n+14/7 | | 2x^2+x-220=0 | | x(x-1)(x-2)(x-3)(x-4)(x-5)=720 | | 3n+7=3(n+2) |